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Abstract

A theoretical study of electron and positron band structures of zinc-blende AlN and InN and their alloy Al0.5In0.5N is presented

using the first-principles full-potential linearized augmented plane-wave method. Equilibrium lattices constants are determined from

the total-energy minimization method. The results are compared with previous calculations and with experimental measurement.

Electron and positron charge densities are computed as function of position in the unit cell. Detailed plots of distributions are along

the /111S direction. The ionicity factors are calculated by means of three different approaches. The calculated results of the

positron charge density reflect the high insight for the annihilation effect.

r 2005 Elsevier Inc. All rights reserved.

Keywords: Ab initio calculations; Positron and electron charge densities
1. Introduction

The lack of blue luminescent semi-conducting materi-
als is still a problem for opto-electronic applications.
Many efforts have been made to produce a material to
overcome this difficulty. The group-III nitrides are
currently being actively investigated in view of their
promising potential for short-wavelength electrolumi-
nescence devices and high-temperature, high-power, and
high-frequency electronics. These semiconductors have
received considerable attention both experimentally
[1–8] and theoretically [9–13]. A number of reviews on
GaN and AlN were given by Strite and Morkoc [14],
Davis et al.[15], and Pankove [16]. The vast majority of
research on III–V nitrides has been focused on the
wurtzite crystal phase. The reason is that most of III–V
nitrides have grown on sapphire substrates which
generally transfer their hexagonal symmetry to the
e front matter r 2005 Elsevier Inc. All rights reserved.
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nitride film. Under high pressure these nitride com-
pounds undergo a structural phase transformations to
the rocksalt structure which is favored by high ionicity
[17,18]. However, there has been less work on
Al0.5In0.5N alloy, and little information on its band-
structure exists.
The annihilation of positrons in solids has been found

to be a useful probe for obtaining information about the
momentum distribution of the electrons [19]. This
method became an important tool for the investigation
of the electronic structure of metals and for under-
standing the behavior of electrons in crystals. However,
to understand the results of positron annihilation, it is
necessary to have an insight about how positron will
annihilate in semiconductors by means of electron and
positron distributions for two different kinds of
semiconductors.
The investigation of electronic properties of solids

using electronic and positron charge densities represent
an increasing importance. So far, this work has been
concerned with electronic charge densities, which were
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found to be useful for understanding the chemical bonds
and the modification of the band structures by in
interstitial impurities [20,21]. Positron charge densities
provided complementary information, they have been
used quite extensively in a variety of materials [22,23].
The great success of the recent development in this field
motivated us to look for a better understanding of the
charge densities.
So far, the group-III nitrides and their alloys are

relatively less studied and few calculations have been
reported on their charge densities [24,25]. This has
prompted us to take such a calculation in zinc-blende
III–V semiconductors, particularly Al1�xInxN alloy.
The aim of this work is to prospect the future of
positronic and electronic charge densities on zinc-blende
AlN, InN and their alloy Al0.5In0.5N.The calculations of
the present work are based the density-functional theory
[26] in the generalized gradient approximation (GGA)
for exchange and correlation. First, the self-consistent
electron structures are calculated by the full
potential linearized augmented plane wave (FP-LAPW)
method [27]. Thereafter, the positron potential is
determined within GGA for the electron–positron
correlation effects, and the positron wave function and
energy eigenvalue are calculated also using the same
method.
2. Method of calculation

Self-consistent calculations of total energies and the
electronic structure based on the non-scalar relatisvitic
full-potential (FP) ‘‘linearized augmented plane wave+
local orbitals’’(LAPW+lo) method were carried out
using the WIEN2k code [27]. This is very accurate and
efficient scheme to solve the Kohn–Sham equations of
density functional theory (DFT) in which exchange and
correlation effects are treated, for example, by the GGA
[26] which often leads to better energetics and equili-
brium structures than the local density approximation
(LDA) [28]. The electron density is obtained by
summing over all occupied Kohn–Sham orbitals and
plays the key role in the formalism. The atomic sphere
radii were 1.7 bohr for Al, 1.9 bohr for In and 1.6 bohr
for N. The required precision in total energy was
achieved by using a large plane wave (PW) cutoff. In the
linear APW (LAPW) method the relevant convergence
parameter is RMT. kmax, which is defined by the product
of the smallest atomic sphere radius times the largest
reciprocal lattice vector of the PW basis. We use RMT.
kmax ¼ 9 for AlN and InN and ternary alloy. This
corresponds to an energy cutoff of 14Ry.
The binaries compounds crystallize in the zinc-blende

structure AC,BC (F 4̄3m), the disordered ternary alloy at
50% is modelled using a supercell with 8 atoms in the
(P) structure. The k integration over the Brillouin zone is
performed using the Monkhorst and Pack mesh [29]. A
mesh of 30 special k-points was taken in the irreducible
wedge of the Brillouin zone for the binary cases and for
the ternary alloy. The iteration process was repeated
until the calculated total energy of the crystal converge
to less than 1mRyd. A total of 7 iterations were
necessary to achieve self-consistency. We compute
lattice constants, bulk moduli and their first derivatives
by fitting the total energy versus volume according to
the Murnaghan’s equation of state [30].
The foundation for modern electronic structure

calculations for solids is the density-functional theory
based on the work by Hohenberg and Kohn [31] and by
Kohn and Sham [32]. During the last two decades, the
ab initio electronic-structure-calculation methods devel-
oped rapidly, and nowadays most of the important basic
properties of solids, such as the structural and cohesive
properties, can be calculated without any adjustment to
the experimental results [33]. In this article, we are
interested in how to determine electron and positron
states in solids and how to determine electron and
positron energy levels and their charge densities. It turn
out that the ab initio determination of positron states in
solids is possible on the basis of the two-component
generalization of the density-functional theory [34–37].
In two-component density-functional theory, the

ground-state energy of system of electron and positron
in an external Vext is written as a function of the electron
(n�) and positron (n+) densities [37]

E½n�; nþ� ¼ F ½n�� þ F ½nþ� þ

Z
drVextðrÞ½n�ðrÞ � nþðrÞ�

�

Z
dr

Z
dr0

n�ðrÞnþðr
0Þ

r� r0j j
þ Ee�p

c ½nþ; n��;

ð1Þ

where F ðnÞ denotes the following one-component
functional for electrons or positrons

F ½n� ¼ T ½n� þ
1

2

Z
dr

Z
dr0

nðrÞnðr0Þ

r� r0j j
þ Exc½n�. (2)

TðnÞ is the kinetic energy of non-interacting electrons
or positrons, and Exc½n� is the exchange-correlation
energy between indistinguishable particles. Finally,
Ee�p

c ½nþ; n�� in Eq. (1) is the electron–positron correla-
tion-energy functional.
The ground-state electron and positron densities

minimizing E½n�; nþ� can be calculated using a general-
ized Kohn–Sham method, which requires the solving of
the following set of one-particle Schrödinger equations
for electrons and positrons

�
1

2
r2ciðrÞ þ

dExc½n��

dn�ðrÞ
� fðrÞ þ

dEe�p
c ½nþ; n��
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ciðrÞ ¼ �iciðrÞ, ð3Þ
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Fig. 1. Crystal structure of zinc-blende Al0.5In0.5N.
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where

fðrÞ ¼
Z
dr0

�n�ðr
0Þ þ nþðr

0Þ þ n0ðr
0Þ

r� r0j j
(5)

is the total Coulomb potential and n0ðrÞ denotes the
(positive) charge density providing the external potential
Vext. The electron and positron densities are calculated
by summing over the occupied states (eF is the electron
energy Fermi and N+ is the number of positrons)

n�ðrÞ ¼
X
�ip�F

ciðrÞ
�� ��2,

nþðrÞ ¼
XNþ

i

cþ
i ðrÞ

�� ��2. ð6Þ

Eqs. (3)–(5) have to be solved self-consistently and
simultaneously for electron and positron states, using an
iterative scheme.
The above method [Eqs. (1)–(6)] would be exact

if the exchange-correlation energy functional Exc½n�

and the electron–positron correlation-energy functional
Ee�p

c ½nþ; n�� were known. Unfortunately, this is not the
case. In electronic structure calculations the most
popular way to continue is to make the LDA for
exchange-correlation effects. Local-density approxima-
tion means that the exchange-correlation energy is
approximated as

Exc½n� ¼

Z
nðrÞ�xcðnðrÞdr; (7)

where �xcðnÞ is the exchange-correlation energy per
particle in a homogeneous one-component gas. In
Eqs. (3) and (4), the functional derivatives of Exc½n�

becomes a function of density. This function is called the
exchange-correlation potential

mxcðnÞ ¼
dExc½n�

dnðrÞ
¼

d½n�xcðnÞ�
dn

. (8)

The exchange-correlation energy �xcðnÞ for a homo-
geneous electron gas is well known from the quantum
Monte Carlo simulations by Ceperley and Alder [38].
(Practical parametrizations of their local exchange-
correlation functional are given, for example, by Perdew
and Zunger [39] and by Perdew and Wang [28].)
For a delocalized positron in a perfect crystal lattice,

the two-component density theory simplifies essentially.
Because the positron density in this case is vanishingly
small at every point of the (infinite) lattice, it cannot
influence the electronic structure. The electronic struc-
ture of the perfect lattice is therefore first solved by some
standard self-consistent band structure code. This code
solves the Kohn–Sham equations obtained from
Eqs. (3), (5), and (6) by omitting the positron nþ and
the electron–positron correlation potential dEe�p
c

½nþ; n��=dn�ðrÞ. For example, the effective electron
potential is

veff ðrÞ ¼ �fðrÞ þ vxcðn�ðrÞÞ, (9)

where fðrÞis the Coulomb potential due the nuclei and
electron charge density and vxc is the GGA [26]
exchange-correlation, which depends on the electron
density n�ðrÞ.
The potential sensed by the positron is constructed as

the sum of the Coulomb potential f (from the electronic
structure calculation) and the correlation potential
V corr,

VþðrÞ ¼ fðrÞ þ V corrðn�ðrÞÞ. (10)

The correlation potential V corr is the zero-positron-
density limit of the electron–positron correlation poten-
tial dEe�p

c ½nþ; n��=dnþðrÞ. V corr is equal to the (correla-
tion) energy for a delocalized positron in a
homogeneous electron gas [40].
3. Results and discussions

Fig. (1) displays the crystal structure of the alloy
Al0.5In0.5N. In Table 1 we compare the calculated data
with experiment and with results obtained from previous
calculations. The LDA values are smaller than the
experiment data (i.e., smaller lattices). By contrast, our
GGA are slightly larger (by 0.45–1.2%) compared to the
experimental lattice sizes. The LDA generally over-
estimates bulk moduli. The values obtained in our work
are in agreement with the results of first-principles full
potential linear muffin-tin orbital calculations [41] to
within a few percent.
To provide a basis for understanding future energy

gap device concepts and application based on zinc-
blende III–V nitrides semiconductors, we have com-
puted the electronic band structure of zinc-blende
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Table 1

Equilibrium lattice constants, bulk moduli and their derivatives of

zinc-blende AlN, InN and Al0.5In0.5N Other theoretical and experi-

mental data are in parentheses

AlN InN Al0.5In0.5N

Present work LDA

V (Å) 37.05 30.22 102.79

a (Å) 4.35, (4.32a),(4.38b) 4.94, (4.46a), (4.98c) 4.68

B 209(203a) 146(139a) 175

B0 3.89(3.2a) 4.48(4.4a) 4.64

E0 �592.84 �11865.07 �24915,66

Present work GGA

V (Å) 21.39 32.15 108.58

a (Å) 4.40 5.04 4.77

B 192 133 153

B0 3.76 3.36 4.83

E0 �595.36 �11876.12 �24942.80

aFrom Ref. [41].
bFrom Ref. [42].
cFrom Ref. [43].

Table 2

Zinc-blende AlN and InN energies in eV at high symmetry-points in

LDA [24] (GGA). All values refer to the top of the valence band.

High symmetry-

points

AlN InN

Gv
1 �14.47(�14.85) �13.53(�13.49)

Gv
15 0.00(0.00) 0.00(0.00)

Gc
1 3.66(3.94) 0.00(0.00)

Gc
15 11.72(12.28) 9.33(9.17)

X v
1 �11.93(�12.26) �10.87(�11.06)

X v
5 �1.73(�1.77) �2.43(�2.19)

X c
1 3.21(3.30) 2.81(2.88)

X c
3 8.03(8.45) 5.93(5.68)

Lc
1 6.69(7.12) 3.07(2.91)

Lv
1 �12.53(�12.87) �11.26(�11.42)

Lv
3 �0.48(�0.49) �0.90(�0.82)

Lc
3 9.34(7.12) 6.49(6.39)
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Fig. 2. Electronic band structures of zinc-blende AlN.
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Fig. 3. Electronic band structures of zinc-blende InN.
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Al1�xInxN alloys. The energies calculated using the FP-
LAPW method for zinc-blende AlN, InN are listed in
Table 2 for the high-symmetry points G, X and L in the
Brillouin zone.
All energies are with reference to the top of the

valence band Gv
15. The band structures of AlN, InN and

Al0.5In0.5N are shown in Figs. 2–4, respectively. The
results show that InN is a direct-gap semiconductor with
the minimum of conduction band at G point. We know
that AlN the wurtzite structure whose electronic
structure was fully studied a few years ago
[24,25,44,45]. A feature worth noting with regard to
zinc-blende AlN, is that it has an indirect minimum
energy gap (at X point) in contrast to the direct gap
observed in wurtzite AlN. Zinc-blende Al1�xInxN alloys
should, therefore, have an indirect gap for small values
of x and a direct gap for large values. It is found that
there is a good agreement between our results and other
work [46]. The calculated energy gaps of AlN EX

g and
InN EG

g are 3.20 and 0.00 eV, respectively, which are in
good agreement with the theoretical values [47,48] as
listed in Table 3. The experimental measured energy gap
of zinc-blende InN EG

g is 1.9 eV [49]. In comparison, the
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Table 3

The energy bands in eV of zinc-blende AlN, InN and Al0.5In0.5N.

Other theoretical and experimental data are given in parentheses

Energy gap AlN InN Al0.5In0.5N

Our LDA work

EG
g

3.66 (6a ) ( 4.1d) 0(–0.09b)(1.9c) (0.4d) 0.93

EX
g

3.21 ( 4.9a ) (3.2d) 2.80 (2.85b ) ( 2.8d) 3.77

EL;M
g

6.68 (9.3a) 3.07 (3.37b ) 5.61

Antisymmetric gap 7.16 5.62

Our GGA work

EG
g

3.92 0 1.18

EX
g

3.28 2.87 3.87

EL;M
g

7.10 2.91 5.81

Antisymmetric gap 7.42 6.01

aQuasiparticle results from Ref. [12].
bTheoretical results from Ref. [47].
cExperimental results from Ref. [49].
dLDA calculations from Ref. [48].
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LDA underestimates the energy band gap. As yet, in the
literature, there is a lack of zinc-blende Al0.5In0.5N
experimental data regarding the band structures and to
our knowledge no theoretical reports have been carried
out by other authors for a direct comparison.
The calculated band gap exhibits strong composition

dependence. The strongest contribution to the gap is due
may be to a structural effect i.e. The composition-
induced disorder in the bond lengths. This is different
from conventional III–V alloys which show a weakly
composition-dependent band gap [50,51]. The funda-
mental gap for Al1�xInxN ranges from 3.92 eV (x ¼ 0)
to 1.18 eV (x ¼ 0:5) to 0 eV (x ¼ 1). The extraction of
the gap bowing parameter of AlInN from various
optical measurements requires knowledge of the band
gaps of the binary compounds AlN and InN. While the
band gap is well known today, the band structure of InN
is rather uncertain, because of sample-quality problems.
Results found by Yamaguchi et al. [52], who measured
the peak position of the PL at about 1.66 eV for
Al1�xInxN alloys for x ¼ 0:6. Optical absorption and
photoluminescence measurements of high-quality sam-
ples, as a well as quasiparticle calculations beyond DFT-
LDA, seem to tend to InN energy gaps close to 1 eV [53].
More reliable experimental studies are highly desirable,
since a lower value of the band gap of InN will
dramatically reduce the difference between bowing
parameters determined experimentally or theoretically.
First principles calculations have been performed for
ordered and disordered zinc-blende Al0.5In0.5N alloys
including full relaxation of bond lengths and bond
angles [46]. The formation enthalpies for the disordered
and ordered (CuAu and chalcopyrite) alloys are given
by Wright et al. [46] for both unrelaxed and fully relaxed
structures. The unrelaxed formation enthalpies are large
(E+0.24 eV/atom) which is expected given the strong
bonds in these compounds and their 12.7% lattice
mismatch. The relaxed formation enthalpies for dis-
ordered alloys are within 3meV/atom of each other. To
the extent that these structures approximate a disor-
dered alloy, this indicates that their formation enthalpies
provide reasonable estimates of the Al0.5In0.5N mixing
enthalpy. In addition, we note that the chalcopyrite
formation enthalpy is lower than the mixing enthalpy
whereas the CuAu formation enthalpy is higher. This
consistent with results for other III–V semiconductor
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alloys [54]. As shown in Table 3 the value of the
antisymmetric gap is larger in AlN than InN. Since this
gap is related to the ionicity of the semiconductors [55],
we obtain that AlN is slightly more ionic material than
InN.
The positron band structures for AlN, InN and

Al0.5In0.5N are displayed in Figs. 5–7, respectively. The
first obvious observation is the similarity between the
positron and electron energy spectrum, with the excep-
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Fig. 7. Positronic band structures of zinc-blende Al0.5In0.5N.
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Fig. 6. Positronic band structures of zinc-blende InN.
tion that the positron energy spectrum does not exhibit a
band gap. The lowest positron energy state is the G state
at kþ ¼ 0.
To visualize the nature of the bond character and to

explain the charge transfer and the bonding properties
of AlN, InN and their alloy Al0.5In0.5N, we calculate the
total valence charge density. We show in Figs. 8–10 the
total valence charge densities along the /111S direction
and the (110) plane for each material. The calculated
electron charge distribution indicates that there is a
strong ionic character as can be seen along the Al–N and
In–N bonds. The nitrogen ions are larger than the
aluminum (indium) ions for both cases. The driving
force behind the displacement of the bonding charge is
the greater ability of N to attract electrons towards it
due to the difference in the electronegativity of Al and N
and of In and N ðwN � wAl ¼ 1:43; wN � wIn ¼ 1:26Þ.
Because of the large mixing of the wave functions for
Al0.5In0.5N, this alloy has a charge density whose
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Fig. 8. Total valence charge densities in zinc-blende AlN (a) along the

/111S direction, (b) in the (110) plane.
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characteristic is intermediate between those of AlN and
InN.
Three different approaches have been used to

calculate the ionicity factor for AlN and InN binary
compounds: (i) the model of Zaoui et al. based
on the valence charge density calculations [56], (ii) the
Pauling definition based on the electronegativity
values of the elements [57] and the Garcia–Cohen
approach based on the valence charge density calcula-
tion [18].
The Zaoui et al. ionicity factor is defined as [56]

f i ¼
SA

SA þ lSC

� �l

, (11)

where SA is the area of the anion charge density, SC the
area of the cation charge density and l ¼ �1 for the
compounds IV–IV and III–V.
We also use the Pauling definition [57] of the ionicity
of a single bond and the Philips electronegativity values
for N and Al; a rapid estimation of the ionicity factor is
obtained by using the Pauling equation:

f P
i ¼ 1� exp½�½wA � wB�

2=4�, (12)

where wA and wB are the electronegativities of atoms A
and B, respectively.
The scaling law by Garcia and Cohen was successfully

in predicting the f i behavior for a wide variety of
semiconductors. However, these authors calculated the
charge densities using the total-energy pseudopotential
method, and the deduced ionicity factors exhibited a
large discrepancy with the Phillips ionicity scale for all
the group-III nitrides. The Garcia–Cohen ionicity factor
is defined as

f i ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ss=Sa

p
, (13)
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/111S direction, (b) in the (110) plane.
-5.0 -2.5 0.0 2.5 5.0 7.5

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Int. region Int. region

AlN

NAl

<111> direction (a.u)

E
le

ct
ro

n 
ch

ar
ge

 d
en

si
ty

 (
e/

a.
u.

3 )

(a)

(b)

Fig. 11. Positronic charge densities at point G in zinc-blende AlN

(a) along the /111S direction, (b) in the (110) plane.

Table 4

The calculated ionicity factor f i of AlN and InN.

Materials f i

AlN 0.40a 0.75b 0.53c

InN 0.32a 0.62b 0.46c

aEstimated using the Pauling definition [57].
bCalculated using the model of Zaoui et al. [56].
cEstimated using Garcia–Cohen approach [18].
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where Ss and Sa are the measures of the strength of the
symmetric and antisymmetric components of the charge
density, respectively, and are defined as [18]

Ss=a ¼ ð1=V 0Þ

Z
V0

r2s=ad
3r. (14)

The calculated ionicity values for AlN and InN are
given in Table 4. We notice that the value of f i for a
same compound is different following the used method
of calculations. The calculated values of 0.53 for AlN
and 0.46 for InN are close to those given by Phillips [17]
but are very different to that found by Garcia and
Cohen [18].
Using the model potential and basis set described in

the previous section, we computed the positron charge
density at the bottom of the lowest band for each
material. These charge densities are calculated along
the normal nearest-neighbor tetrahedral distance (the
/111S axis) and in the (110) plane.
Positron charge densities for AlN, Al0.5In0.5N and

InN, respectively, are displayed in Figs. 11–13. The first
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Fig. 12. Positronic charge densities at point G in zinc-blende Al0.5In0.5N (a) along the Al–N bond direction, (b) along the In–N bond direction,

(c) in the (110) plane.
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observation is that there a large charge density between
atoms. Contrary to previous works performed so far
[58], the calculations carried out here taking valence and
core electrons into account are based on first-principles
method. At the bond center the magnitude is smaller for
InN than for AlN, because in InN the positron density
concentrates strongly into the interstitial regions,
decreasing the core electrons effect. The system pre-
sented, being able to predict quantities such as S and W
line-shape parameters [59] directly measurable by slow-
positron-beam techniques, is a useful tool to be
employed as a support to the experiments concerning
various kinds of problems of bulk solids.
Qualitatively, these charge densities present nearly the
same characteristics, since there is a clear asymmetrical
positron charge distribution relative to the bond center.
Furthermore, it is clear that the positron is located in the
interstitial region and between atoms and that the
positron density is reduced almost to vanishing point in
the immediate vicinity of the ion cores. At no point
along the nearest neighbor Al–N (In–N) vector is the
positron density more than 40% of its peak in the
interstitial regions. The maximum point of the prob-
ability is found to be located at the tetrahedral site and
between atoms. From the quantitative point of view,
there is a difference of charge in the interstitial regions.
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Fig. 13. Positronic charge densities at point G in zinc-blende InN

(a) along the /111S direction, (b) in the (110) plane.

Table 5

Relevant charge densities at different positions in AlN, Al0.5In0.5N,

InN

Material C. int Bond center A. int

AlN 0.132 0.067 0.151

Al0.5In0.5N

Al–N 0.128 0.056 0.139

In–N 0.128 0.049 0.146

InN 0.121 0.054 0.134

C. int: cation interstitial region.

A. int: anion interstitial region in the same arbitrary units.
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The positron distribution is more pronounced in the
neighborhood of the N anion than that in that of the
Al(In) cation. The corresponding charge densities for
different positions are listed in Table 5. At the cation
interstitial region, when we go from one binary
semiconductor, AlN, to another one, InN, through the
ternary alloy Al0.5In0.5N, a fluctuation in the positron
charge density is seen which reaches a maximum value
due to the effect of Al, whereas an decrease in the
positron charge density corresponds to the dominance
of In. At the bond center the situation is quite different,
since the positron charge density also decreases. This
suggests that the positron tends to fill the inter-nuclear
spacing, which could be explained as charge transfer
from the cation interstitial region to that of the anion.
We find that the same effect occurs at the anion
interstitial region but is larger. We may conclude that
there is a strong affinity of positrons for the anion.
Ultimately, these results will lead us to think that the
positron may preferentially annihilate with anion rather
than the cation. This work reveals several possibilities
for the study of positron annihilation in ternary alloys.
4. Conclusion

We have presented a study of the electronic and
positronic band structures of AlN, InN and Al0.5In0.5N.
The electronic band structures from the FP-LAPW
calculations are attested by a comparison with experi-
mental data and theoretical results. InN and Al0.5In0.5N
resulted as direct while zinc-blende AlN resulted as
indirect semiconductor from our calculations. We
showed critical point transition energies for AlN and
InN, which could be useful for future experimental
studies of these materials. We provided information
about the electron charge densities, which allows us to
evaluate the charge transfer in the two binary com-
pounds. The ionicity factors also were calculated with
three approaches. The calculated results of the positron
charge density reflected the high insight for the
annihilation effect. The positrons are repelled by
the positively charged atomic cores and tend to move
in the interstitial regions. The system presented, being
able to predict quantities such as S and W line-shape
parameters directly measurable by slow-positron-beam
techniques, is a useful tool to be employed as a support
to the experiments concerning various kinds of problems
of bulk solids. Further work on positron annihilation in
binary compounds and ternary alloys is under progress.
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